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Abstract. We propose a branch-and-bound framework for the global optimization of unconstrained 
HOlder functions. The general framework is used to derive two algorithms. The first one is a gener- 
alization of Piyavskii's algorithm for univariate Lipschitz functions. The second algorithm, using a 
piecewise constant upper-bounding function, is designed for multivariate HOlder functions. A proof 
of convergence is provided for both algorithms. Computational experience is reported on several test 
functions from the literature. 
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1. Introduction 

Consider the problem of globally maximizing a real-valued function f defined on a 
hyperrectangle R = [a, b] = [al, bl] x [a2, bJ x . . .  x [an, bn] C I~ n . The function 
f satisfies the HOlder (or generalized Lipschitz) property, i.e., there exists L E 
and a />  1 such that: 

l 

Vx E R,  Vy ~ R If(x) - f (Y) l  < Lllx - yll ~ 

where 11 " 1[ denotes the Euclidean norm. Any constant L for which the above 
property is satisfied, is called a Lipschitz constant for the function f .  Note that 
most of the results of this paper remain valid if other norms are considered. 

Such a problem arises in many applications. One example is the simple plant 
location problem under a uniform delivered price policy (see, e.g., Hanjoul et al. 

[91). 
The aim of the paper is to study the extension of Piyavskii's method [19] [20] 

for Lipschitz optimization to HOlder optimization, both in the univariate and the 
multivariate case. This is done using the general branch-and-bound framework 
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which was already proposed (see [7], [5], see also [10]) for the multivariate Lip- 
schitz optimization. It is extended and adapted to design two algorithms H O L  1 
and H O L  n, respectively, for univariate and multivariate HOlder optimization. 

The algorithm for univariate Lipschitz optimization is based on the iterative 
construction of an upper-bounding function corresponding to the lower envelope of 
linear functions. When extended to the optimization of HOlder functions, the linear 
functions change into parabolic functions. The upper-bounding function is then a 
piecewise concave function and the determination of its successive maxima can be 
achieved through line search techniques. For integer values of o~, the determination 
of each maximum can be obtained by solving an equation of degree c~. Note that 
for o~ = 1, the problem reduces to the usual Lipschitz problem, which is therefore 
a special case of the HOlder problem. 

The piecewise concave upper-bounding function can be naturally extended to 
the case of multivariate HOlder functions but becomes very difficult to handle. 
Indeed, the computation of a local maximum requires the determination of the 
intersection of several hypersurfaces of equation: y = f ( x  j)  -I- L[Ix - xJlll/~. 
A relaxation of the upper-bounding function is hence proposed. The algorithm 
for multivariate HOlder optimization uses a piecewise constant upper-bounding 
function and a partitioning scheme with hyperrectangles. 

The paper is organized as follows. The general branch-and-bound framework 
for the optimization of HOlder functions is stated in the next section. The algorithms 
for univariate and multivariate HOlder optimization, both derived from the general 
framework are described in Sections 3 and 4 respectively. A precise description of 
each algorithm is provided together with a convergence proof. Finally, computa- 
tional experience is reported in Section 5. 

2. A Branch-and-Bound Framework for Optimizing H61der Functions 

In this section we describe a branch-and-bound framework for the global max- 
imization of HOlder functions. The underlying idea is to replace the objective 
function by an analytical upper-bounding function which is easier to maximize. 
This idea has already been extensively used when the objective function satisfies a 
Lipschitz property. Indeed, the Lipschitz property provides a natural way to build 
upper-bounding functions (see, e.g., Piyavskii [19] [20]). Some notations are given 
below. 

2.1. NOTATION 

Considering the general problem of maximizing a continuous function over a 
compact set, the principle of a branch-and-bound algorithm is to partition iteratively 
the problem into smaller entities called subproblems. In the branch-and-bound 
framework we propose in this paper, a subproblem 79 is characterized by R~, C R, 
a hyperrectangle of I~ n (when n = 1, it reduces to an interval), BT,, a constant 
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upper-bound of f over R (for all x E R, f ( z )  ~< Bp)  and possibly some other 
informations (see the detailed descriptions in Sections 3 and 4). We hence use the 
notation: P = (Rp,  B ~ , . . . ) .  The subproblems are stored in a list denoted by/2. 

At step k, we denote by f~pt,k Xoptk and Fkopt respectively the best function 
evaluation, the incumbent point and the largest upper-bound for all subproblems 
in/2. Among all the subproblems in/2, all those with an upper-bound lower than 
fkop t + e can be discarded as they cannot contain an e-optimal solution, i.e., a 

value larger than fkop t + e (fathoming test). Finally, when the gap between Fkopt and 
fkop t becomes lower than the chosen tolerance e, fkop t is an e-optimal value and the 
branch-and-bound algorithm can be stopped (optimality test). 

2.2. BRANCH-AND-BOUND FRAMEWORK 

The general branch-and-bound framework for the global maximization of HSlder 
functions can now be formally stated: 

1. Step 0 (Initialization). 
k + - 0 :  
R ° +- R; 
Choose a discrete set D O C R°; 

f2,,  +- f(x); 
,':cOt +-- argmaxxeoo f ( z ) ;  

Let F ° be an upper-bounding function of f on R°; 
Compute B ° = maxzERO F ° (z); 
F°opt +-- BO; 
If 0 0 . o F~pt - fopt <~ e stop. fopt is an e-optimal value; 
z; +- {po = (Ro, Bo, . . . )} ;  

Initial lower-bounding rule 

Initial upper-bounding rule 

2. Current step (k = 1 ,2 , . . . ) .  
Whi le /2  is non-empty do 

k +-- k +  1; 
Extract f rom/2 the subproblem 7:' = (R, B , . . . )  with the 
largest upper-bound B; Selection rule 

2.1 Branching step. 

Partition R into p hyperrectangles ~1, ~ 2 , . . . ,  ~-p; Branching rule 

2.2 Evaluation of the subproblems. 
For j = 1 to p do 

Let RJ = [~J, b J]; 

2.2.1 Lower bound 
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Lower-bounding rule 

If f(~J ) > fokp~l then 

Xkopt, +-- ~J ; 
Else 

Endif; 

f kop t k - 1  +-- f opt ; 
xkp t  k -  1. 4--- X op t , 

2.2.2 Upper bound 
Build an upper bounding function ffJ on RJ; 

Compute BJ = max FJ(x) ;  
xE/U 

Upper-bounding rule 

2.2.3 Update of £ 
Add ~J  = (RJ,BJ,  . . . ) t o  f.:; 

EndFor ;  (End of Step 2.2) 

2.3 Fathoming test 
Delete from E all subproblerns 7 9 = (Rp, B p , . . . )  with Bp <~ f~okt + E; 

2.4 Optimality test 
Let Fokpt be the maximum of all BJ; 
If  Fokpt -- fko',~yt <<- c then 

stop: CoOpt is an c-optimal value; 
Endif; 

Endwhile 

Note that the fathoming test is not necessary for the convergence of the branch- 
and-bound scheme. Its aim is only to improve the practical efficiency of the algo- 
rithm and to reduce the memory requirements. Indeed, if it is not performed, the 
subproblems which would have been fathomed, remain in £ and will never be con- 
sidered in a subsequent branching step. Moreover, a double-ended priority queue 
or maxminheap can be used to implement the list £,  in order to improve further 
the efficiency of the algorithm (see Atkinson et al. [1] for a definition and proper- 
ties of double-ended priority queues). Indeed, in a maxminheap, both the highest 
and the lowest among k values are accessed in constant time. Its structure can be 
updated in O(log 2 k) time when adding or removing one element. Hence, when 
a maxrninheap is used, the selection rule and the fathoming test are performed in 
constant time. The update which is necessary when a subproblem is added to E, 
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requires O(log 2 k) operations, instead of O(k) operations if a simple list is used 
(see [12]). 

This optimization scheme is applied in the next two sections in order to design 
practical algorithms for the univariate case (Section 3) and the multivariate case 
(Section 4). 

3. Univariate H~lder Optimization 

In this section, we specialize the branch-and-bound framework of the previous 
section to the problem of maximizing a univariate function f over an interval 
R = [a, b] C ~ assuming that f satisfies the HSlder condition: 

1 

Vx E R, Vy C R If(x) - f(Y)l ~< nix  - yl~, 

with a known Lipschitz constant L and o~/> 1. A resulting algorithm called H O L  1 , 
is proposed below. 

The upper-bounding function used in univariate Lipschitz optimization is extend- 
ed to the case of univariate HSlder optimization. It leads to a piecewise concave 
upper-bounding function which is described next. The definition of the subproblems 
used in H O L  1 follows. The branch-and-bound rules and tests for the algorithm are 
then stated. A formal description of H O L  1 is obtained by replacing the specific 
rules and tests in the general branch-and-bound framework of Section 2. The proof 
of convergence of the algorithm is given at the end of this section. 

3.1. A PIECEWISE CONCAVE UPPER-BOUNDING FUNCTION 

For any given evaluation point xJ E R = [a, b] define the function fJ by: 

Vx E R fJ(x)  =- f ( x  j) + L I x -  xjl 1/a. 

It follows from the HSlder property that: 

V x E R  f ( x ) < ~ i f ( x ) ,  

i.e., fJ is an upper-bounding function for f over R. 
More generally, given a sequence of k points (xJ)j=l,2,...,k in R, the function 

F k defined as the lower envelope of the upper-bounding functions 

Fk(x)----- rain f(xJ)+LIz-xJll/'  
j=l ,2, . . . ,k 

is also an upper-bounding function of f over R. 
Assume the sequence (xJ)j=l,2,...,k is ordered: xJ <<. x j+l for all j = 1, 2 , . . .  

k - 1. Let a j and/P  be any two successive points in this sequence. We define the 
upper-bounding function F2 k spanning the interval [aJ, bJ] by: 

Vx E [aJ ,b i] ,Fk(x)=min ( . f ( a J ) + L ( x  aJ) i ld , ' f (bJ)+L(bJ-x)  lId 

t 
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Note that this upper-bounding function F~ is not the tightest, in the sense that 

Vx ~ [aJ,bJ], Fk(x)  >>. Fk(x)  = min f ( x  j) + Llx-xJll/~ 
j= l ,2,.,.,k 

and the equality does not necessary hold for all x. This comes from the fact that 
for some HOlder functions, one of the functions f ( x  j) + Llx - xJll/~, evaluated 
at a point xJ outside the interval [aJ, bJ], might cut the concave tooth defined by 
fa(x) and fb(x) *. However, such a situation being difficult to detect a priori, the 
relaxed upper-bounding function F2 k is used in the algorithm, as it is much easier 
to handle. 

Also note that both functions f~ and fb are concave. This implies that the 
function F k is also concave over [a j, bJ] C R, and more generally, piecewise 
concave over R. Moreover, fa and fb are respectively increasing and decreasing 
over [aJ, bJ]. The HOlder condition implies that f~(aJ) <~ fb(b j) and fa(b i) >! 
fb(bJ). Hence, by continuity of the function f on [aJ, bJ], we deduce that there 
is a unique point xPJ C [aJ,b j] such that fa(xPJ) = fb(xPY). Denote by B j this 
common value. The point (xPJ, B j) is the intersection of the graphs of the two 
functions fa and f5 (see Figure 1). It follows from the monotony properties of both 
functions that BJ is also the unique maximum of Fk(x)  o v e r  [a j ,  bJ]. The concave 
part of the upper-bounding function spanning [a j,  b j] can be viewed as a concave 
tooth of a saw-tooth cover. From now on, we will refer to x pj as the "peak point" 
of the concave upper-bounding function spanning [aJ, b J]. 

3.2 .  RULES AND TESTS FOR ALGORITHM H O L  1 

The concave upper-bounding function spanning R j = [aJ, bJ] is characterized by 
the interval R j, its unique maximum t35 and the peak point xP~. The corresponding 
subproblem is hence defined by: PJ = (R j,  B j,  xPJ ). The branch-and-bound rules 
defining the algorithm are the following: 

Selection rule. The subproblem ~ = (R, B,  ~P) E 12 with the largest upper bound 
is chosen (ties are broken arbitrarily). Let R = [~, b] be the corresponding 

interval. 

Branching rule. The interval R --- [~, b] is split into the two sub-intervals Co = 2): 

= [a, 
[ e p  

* Consider, for example, the behaviour of algorithm HOL 1, after two iterations, maximizing the 
function f defined over R ---- [0, 1] by 

Vx ~ [0, 1/2] f(x) = 2 V ~ -  1/4 I, 
Vx C [1/2,1] f(x) = l. 

( f  satisfies the HOlder condition with L -- 2 and a = 2). 
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f(aJ) 

B j 

fix) j 

a i x~i b i 

Fig. 1. Piecewise concave upper-bounding function. 

f(V) 

Initial lower bounding rule. The function f is evaluated at the extreme points of 
the starting interval R =- [a, b] : D O = (a, b}. 

Current lower bounding rule The function f is evaluated at ~P~, the peak point 

of the upper-bounding function spanning RJ. 

Initial and current upper bounding rule. The constant upper-bound over RJ is 
defined as the maximum of the current upper-bounding function F k spanning 
R J :  

= max. Fk(x)  
xE-~3 

= max min{ f (a  j) + L(x  - aJ) 1/a, f (b  j) + n(b j - x)l /a}.  
zcT~ 

Using the optimization scheme proposed in the previous section with these 
rules, the algorithm H O L  1 is fully described. The only difficulty comes from the 
determination of maxx~ ~ F~(x),  i.e., the maximum value of the current upper- 

bounding function F k, and the corresponding point ~PJ, i.e., the peak point. As the 

two values BJ and ~PJ are obtained from the same system of equations, the lower- 
bounding rule and the upper-bounding rule of the branch-and-bound algorithm are 
performed simultaneously. Moreover, as the upper-bounding function spanning 
[a j, bJ] is unimodal (indeed, it is concave), but not differentiable, its maximum can 
be found by any line search algorithm, such as the Fibonacci search or the Golden 
section search (see [14]). In the cases where c~ = 2, 3 or 4, an analytical expression 
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of the maximum can be derived to improve the efficiency of the algorithm (see the 
appendix). 

Another interesting approach, which could be further investigated, would be 
to approximate the upper-bounding function by two wisely chosen tangents to 
fa and fb- As the upper-bounding function is concave over each interval [aJ, bJ], 
it would hence be a relaxed but still valid upper-bounding function for which 
the determination of the maximum would be much easier to perform. Indeed, an 
analytical expression can be obtained in such a case. 

3.3. CONVERGENCE OF H O L  1 

We first derive a condition for the algorithm to be finite, i.e., to stop after a finite 
number of step when e is equal to 0. 

PROPOSITION 1. The algorithm H O L  1 is finite i f  at a certain step, ~P = ~ or t). 
Proof  Assume ~P = 5 at step k of algorithm H O L  1 . By definition of the peak 

point Y~P, this immediately implies that B = f(6) .  By definition, Fokpt = B and 

clearly f ~ t  = f ( a ) .  The stopping test is hence satisfied with e = 0. A similar 
reasoning can be made assuming Y~P = b. • 

We now prove the asymptotic convergence of H O L  1, i.e., that the bounds it 
provides can be made arbitrarily close to f*, by performing a sufficient number of 
steps. In practice, this means the algorithm stops after a finite number of steps for 
e > 0 .  

THEOREM 1. Either the algorithm H O L 1 is finite, or it asymptotically converges: 

lim Fokpt = lim fko, t = f*  (= max f (x)). 
k---~+c~ k--++cx~ ~" x E R  

Proof  It follows from the bounding rule that (Fokpt)keN is a non-increasing 

sequence bounded from below by f*. By construction, the sequence (fkopt)keN is 
non-decreasing and bounded from above by f*. These two sequences are thus con- 
vergent and so is the non-increasing sequence (Fokpt- fkop t)kcN. Denote respectively 
by Fopt, fopt and 5, the limits of these three sequences. 

We now prove the result (i.e., that Fopt = fopt or in other words that 5 = 0) by 
contradiction. Assume that 5 > 0 and let 

5~ 
c = 2ceLa_l( b _ a)1_1/a > 0. (1) 

As Fokpt converges to Fopt, there is an N E N such that: Vk >>. N Fokpt - Fopt <<. e. 
Denote by 7 9 = (R, B, x p) the subproblem considered at a step k >~ N ( B  = Fokpt). 
The branching on 7 9 leads to two subproblems 

p l  = ( R 1 , B I , x P l )  with R 1 ---- [ a , x  p] 
792 ( R  2, B 2, x p2) with R 2 = [x p, b]. 
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F ~ opt 

F.~ 

ffa) 

Fig. 2. 

t 
i 
i 

1 

a X X p 

Illustration of the proof of convergence. 

fib) 

We first consider subproblem "] 9 1  . The upper-bounding function spanning R 1 is 
the lower envelope of two concave functions fa and fzv. Denote by Ca and Czp 
the corresponding curves: 

Ca" y = f a ( X )  ( = f ( a ) + L ( x - a )  1/a) 
Czv " y =  fzp(x) ( = f ( x  p ) +  L(x  p - x ) U a ) .  

Let ~ be the intersection point of y = Fopt with the curve Czp. It is the solution 
of  the equation: 

Fopt = f ( x  p) + L(x  p - x )  1 /a .  

It follows that 

For the convenience of the following computations, we express ~ as a combination 
of a and xP: 

= ),a + (1 - A)x p. 

Using this notation we derive the following useful relations: 

= (Fopt - f(xP)) a (2) 
L '~ (xP -- a) 
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~1/~ = Fopt - f ( x  p) 
L(xP - a)1/c~" (3) 

Consider the tangent at the point x p to the curve Ca: 

Ta " y = f (a )  + L (x  p - a) 1/~ + L (x - xP)(x p -  a) 1/~-1 (4) 
o~ 

and the tangent at the point & to the curve Czp: 

Tzp " y = f ( x  p) + L (x  p - fiT) 1/~ -4- L(:~ _ x ) ( x  p _ :~)l/o~-I (5) 
ol 

L = f ( x  p) + L ~ l / a ( x  p - a) 1/c~ + --(~c - x ) ~ l / c ~ - l ( x  p - a) l/c~-I 
oL 

(6) 

As the functions fa and fzp are concave, the tangents Ta and Tzp are respectively 
above Ca and Czp. Let YT denote the intersection point of Ta and Tzp. Adding 
~ l / a×  (4) and ,~× (6), yields 

YT(~ +,~ I/c~) = ~ f (a) + ~ f (xP) + L~  ' /C'(xP-a) 1/a ( 1 + ~  ( ~ - - ~ ) )  .(7) 

Using (3) in (7), and after some rearrangements, we obtain: 

YT = 

( f ( a )  + ( 1 -  ~ )  L ( x  p - - a )  '/c~) (Fop t - f ( x P ) )  -~- ~Fop, i ( x  p - a )  1/c~ 

Fopt - f (xP) + ~L(xP - a)ll  a 

(8) 

The upper-bounding rule defines B 1 as the intersection of Ca and Czp. It follows 
from the concavity of fa and fzv that 

B l  <~ YT. (9) 

From the definition of c (identity (1)) and from the fact that Fopt - f ( x  p) > 
it follows that 

(Fopt - f (xP))  a >E. 
a L  a -  1 (xP - a) 1-1/a 

This implies that 

 -L(2 - a) > c. 
OL 

As 

(lo) 

1/a = B - ~ L ( x  p - a) 1/c', ( l l )  
ol 
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using (10), we get 

f ( a ) +  ( 1 - ~ )  L ( x P - a ) l / a  < B - e  <~ Fopt . (12) 

Combining this last inequality with (8) and (9), we finally obtain: 

B 1 < Fo, t. 

Using a similar reasoning on the second subproblem, we also obtain B 2 < 
Fopt. As the iteration number k is such that k ) N,  E contains at most N + 1 
subproblems as some of them may have been discarded. Hence, after at most 
N + 1 iterations after iteration N (after 2 N  + 1 iterations of algorithm HOLI) ,  
all subproblems P = (B, R, x p) in/2 are such that B < Fopt. It follows that for 
all m > / 2 N  + 1, Fopt - fopt <~ Fompt - fopt < 5. We therefore have a contradiction 
with Fopt - fopt = 5 as the initial assumption 6 > 0 is hence proven to be wrong. 
As for all k E N, FJkpt >1 f~okpt, we have necessarily 5 >/0. It follows that 5 = 0. • 

4. Multivariate Hiilder Optimization 

We are now considering the problem of maximizing a multivariate HOlder function 
over a hyperrectangle R of I~ n : 

max f ( x )  
subject to: x E R 

where 

R = [a,  b] = [ a l ,  hi]  × [a2, b2] x . . .  x [an, bn] C Nn, 

and f satisfies the HOlder property: 

V(x,y) e R x R If(x)- f(y)l <<. L I I x - Y l l  ~/~, 

with o~ >/ 1. 
The generalization of the algorithm designed for univariate HOlder optimization 

(see previous section) to the multivariate case appears to be very difficult. Indeed, 
the crucial step consisting of finding the maximum of the upper-bounding function 
F k (x) -- mini= 1,2,...,k { f (x J) + L I Ix - xJ 111/c~ } is again critical as it corresponds 
to the determination of  the intersection of hypersurfaces which could be described 
as "parabolic cones". In multivariate Lipschitz optimization, it can be shown (see 
Mladineo [16]) that the intersection of two such hypersurfaces (which are cones of 
parallel axes) is included in a hyperplane. This allows the enumeration of all local 
maxima of the upper-bounding function, each of them requiring the solution of  a 
system o f n  variables and n +  1 equations (n linear and one quadratic) (see Mladineo 
[16] and Jaumard, Herrmann and Ribault [11] for an efficient implementation). In 
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the case of H61der functions, the intersection of two hypersurfaces is no longer 
included in a hyperplane. Hence, there is no straightforward generalization of 
Piyavskii's algorithm to the case of HSlder functions. Other approaches have to 
be considered. The main feature of H O L  n, the algorithm proposed in this section, 
consists of a much more tractable upper-bounding function. 

4.1. RELAXED UPPER-BOUNDING FUNCTION 

Considering a set X C ~n and a point x j E X where the H61der function f is 
evaluated, the tightest upper-bounding for f is f J (x )  = f ( x  j) -1- Liix - xJi[l/~. 
The tightest constant upper-bound for f is then the maximum of f J  (x) over X.  If 

_ _  a+b X is a hyperrectangle R = [a, b] and x j - -T-  = c is the center of R, this constant 
upper-bound is: 

t3 = m:x fu(z) = f(c)+ L (lib-_2 all) 

Indeed, the maximum of  f J ( x )  over R is reached at the most distant point from 
x = c, which is any extreme point e of the hyperrectangle. As c is the center of R, 

lie - ci[ is half the length of the diagonal: lie - ci[ = Ilbzall 
Assuming k points (xJ)j=l,2,...,k are given in R, the tightest upper-bounding 

function for the H61der function f is F k ( x )  = minj=l,Z,...,k i f ( x ) .  Consider a 
partition of R in k hyperrectangles (R j)j= 1,2,...,k and denote again by c A the center of 
each hyperrectangle R j. The tightest piecewise constant upper-bounding function 
based on this partition and denoted by F2 k, is defined as: 

BJ 
r 

" "  " ~ 7 " 

The upper-bounding function is hence relaxed to constant pieces over hyperrect- 
angles. We now provide the rules and tests for the branch-and-bound algorithm. 

4.2. RULES AND TESTS OF ALGORITHM H O L  n 

The branch-and-bound rules defining the algorithm are the following: 

Selection rule. The subproblem ~ = (R, B) E 12 with the largest upper bound B 
is chosen (ties are broken arbitrarily). Let R = [~, b] = [~1, hi] x [~2, b2] x . . .  x 
[an, bn] be the corresponding hyperrectangle. 

Branch ing  rule. Let [t = maxi=l,z,...,n(bi -__ai) ([t is the length of the longest edge 
of R; ties are broken arbitrarily). Then R is partitioned into p hyperrectangles 
~1., ~ 2  . . . ,  R-P of the same dimension by cutting the t th edge of R into p equal 
parts. 
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Initial and current lower bounding rule. The function f is evaluated at the cen- 

ter of R ° and RJ: 

= 

yzj = ~j _ a~+v 
2 

Initial and current upper bounding rule. The constant upper-bound is defined 

over RJ by: 

{ B J = m i n  B , f ( g J ) + L  

Note that for some HOlder functions, we might have 

( I ( U )  + L II~j - aJl! > 
2 

As the current subproblem ~ J  results from the branching step performed on sub- 

problem ~ = (R, B) ,  B is also a valid upper-bound for ~3. Note also that the 
definition of the upper-bounding function given above guarantees that the sequence 
of successive upper-bounds B is non-increasing. 

4.3. CONVERGENCE OF H O L  n 

Assuming some conditions are satisfied, the proof of convergence proposed by 
Horst and Tuy [ 10] for a general branch-and-bound algorithm could then be applied 
to both algorithms H O L  1 and H O L  n. Indeed, it would suffice to prove that, 
according to the terminology of Horst and Tuy, the bounding rule is consistent 
and that the selection rule is bound improving. In order for the paper to be self- 
contained, we propose a specialized convergence proof. 

Some conditions could be derived for the algorithm to be finite, i.e., to stop 
after a finite number of iterations when e = 0. Such a situation occurs when, at a 
given step, the objective function coincides with the upper-bounding function, at 
least in a neighborhood of the global maximum f* = maxx~R f ( x ) .  Otherwise, 
the algorithm is asymptotically convergent. 

Denote by h = B - f (c) the height of any subproblem 7 ~ = (R, B),  where c is 
the center of  R. As a preliminary result, we prove that the height decreases when 
a subproblem is considered by a branching process. 

PROPOSITION 2. Let 79J = (l:gJ, 13J) be one of  the new subproblems obtained 
when branching on subproblem 7 9 = (R, 13). Denoting by A the quantity 

1 - PU-t'~ 1/2o~, 
~-p2 } we have 

h j <~ A h  (13) 
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and A < 1, for any p > 1. 

Proof. I f R  = [a, b], denoteby D = l ib-all  = eft)1/2, wheregi = bi-ai,  
the length of  the diagonal of  the hyperrectangle R. Suppose gm = maxi=l,2,._,n{gi}. 
The set R is divided into p hyperrectangles by partitioning its m-th edge into p 
equal parts. Hence, the diagonal of all resulting hyperrectangles are of equal length. 
Let RJ denote one of the resulting hyperrectangle and DJ the length of its diagonal. 
We have 

n ~ (~rn~2 k (~m~ 2 (D j) = E ( g { ) 2 =  g2 + = e ~ - g 2  + . 

i=1 i=1 \ p / i= l  \ p / 
i7£m 

It follows that 

(e¢),: 
D ~  - 1 - D2. 

Finally, as for all i ¢ m, gi <~ em implies D 2 = ~3-1 g2 < he2,  we have 

(DJ)2 {p2 _ 1 "~ 
,)---r- <- ) • 

Combining this last inequality with the definition of a subproblem height 

h = B - f ( c )  = L  

the inequality (13) holds. The result A < 1 for p > 1 is immediate. 

As p = I would imply that the initial hyperrectangle is never partitioned, we 
assume that a value p greater than 1 is chosen. For the following convergence 
proof, we also denote fk  the function evaluation f (~), where ~ is the center of the 
subproblem P on which the branching occurs at step k. 

We now prove that if the algorithm is not finite, there is a subsequence of 
subproblems for which the gap between the upper and lower-bounds goes to zero 
when the number of  steps goes to infinity. 

PROPOSITION 3. Either the algorithm is finite or there exists an infinite sub- 
sequence of  unfathomed branching subproblems such that 

• kq 
hm (F~,~ t - fkq) = 0. 

q--+-t-oo ~" 

Proof. Assume that the algorithm does not stop after a finite number of steps. 
Then there necessarily exists an infinite sequence of nested subproblems on which 
branching occurs at steps ko, k l , . . . ,  kq, . . . .  By nested, we mean that each sub- 
problem in the sequence results from the branching process performed on the 
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previous subproblem in the sequence. By successive applications of Proposition 1, 
we have 

A [ E~kq-I  fkq_, • . .  A (Fo  t- Fok~- f% < ,__,~r opt ) < <. fko). 

Note also that for any q, we have/7~q t - fkq >1 0. Finally, as A is smaller than 1 and 

FokO _ fko BO f (c  °) = ~-IIb a l l l /~  is a finite quantity, the result follows. • p t  = - -  - -  

We now prove the asymptotic convergence of algorithm H O L  n. 

PROPOSITION 4. Either the algorithm is finite or it asymptotically converges, 
that is 

lim Fokpt = lim fo~t = f* (= m ~  f (x)). 
k--++oo k--++oo x E K  

Proof. It follows from the bounding roles proposed in the algorithm that 

Vk fk  <<. fkop t <~ f ,  <~ Fkopt. (14) 

This implies 

Vk O < Fokpt-- fkopt <. Fkopt-- f k. (15) 

It also follows from the bounding rule that (Fokpt)kCN is a non-increasing sequence 

bounded from below by f*. By construction, the sequence (fkopt)ke N is non- 
decreasing and bounded from above by f*. These two sequences are thus con- 
vergent and so is the non-increasing sequence (Fkopt - fkopt)k~N. From Proposition 
3, we known that 

• kq 
h m  ( F o . t  - f k q )  = 0. 

q--++oo - 

From (15), it then follows that 

• kq kq 
h m  ( F o p  t - f o p t )  = O. 

q - + + o o  

Finally, as the sequence is known to be convergent and as there exists a sub- 
sequence converging to zero, by uniqueness of a limit of a convergent sequence, 
we have 

lim (Fko,t k k-~+oo ,. -- fopt) = O. 

The result then immediately follows from (14). • 
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TABLE I~ Univariate test functions for HOlder optimization 

Function }I6lder Interval Lipschitz Source 
number function f(x) [a, b] constant La 

1.1 - x  6 + 15x 4 - 27x 2 - 250 [-4, 4] 2520 [13] 

1.2 - x  2 + 5x - 6)/(z 2 + 1) [-5, 5] 6.5 [4] 

- ( x -  2) 2 i f z  < 3 . [0, 6] 4 [22] 
1.3 -21n(z  - 2) - 1 otherwise 

{ ~ / 2 z  - x 2 if x <: 2 [0, 6] 4 new 
1.4 ~ / -x  2 + 8z - 12 otherwise 

1.5 I -3z  + 1.4) sin lSz [0, 1] 36 [2] 

~2 
1.6 -2(z  - 3) 2 - e T  [-3, 3] 85 [18] 

5 

1.7 E k sin[(k + 1)z + k] [-10, 10] 67 [2] 
t .=l 

5 

1.8 ~--~" k eos[(k + 1)z + k] [-10, 10l 67 [13] 
~=1 

( ~ / ~  1 cos(2x) } 
1.9 max sin(2x - 1), ~ e x p ( ~  log z) [0, 10] 7.5 new 

( cos(2x) sin(2x) 2sin(3x) ] 
1.10 r n a x ~ e x p ( ~ l o g z ) , e x p ( ~ l o g z ) , 3 + k  x f  [0, 10] 15.75 new 

5. Computational Experiences 

In this section, we report the results of computational experiences performed on 
twenty HOlder test functions. Half of them are univariate functions, whereas the 
other ones are functions of two variables. Most of these functions are test functions 
drawn from the Lipschitz optimization literature. Some additional test functions 
were defined to enrich the computational experiments. The expressions of the func- 
tions, the initial hyperrectangles [a,b], the Lipschitz constants and the references 
are given in Table I for the univariate functions and in Table III for the 2-variable 
functions. The original lipschitz constants (for the case a = 1 and hence denot- 
ed Ll)  that were not available in the literature were computed using a fine grid 
search on the norm of the gradient. For each other value of a, a lipschitz constant 
L -- L1 lib - all ( l - l /a)  was computed in order to satisfy the HOlder condition. 
Indeed, as the lipschitz condition holds with Lipschitz constant L1, we have: 

Vx, y E R I f (  x ) - f (Y) l  <~ L I N X -  YI[, 
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T A B L E  II. Op t ima l  va lues  and  vectors  for the  univar ia te  test  func t ions  

Func t ion  
n u m b e r  

1.1 
1.2 
1.3 
1.4 
1.5 
1.6 
1.7 
1.8 
1.9 

1 . I0  

O p t i m a l  value 

fopt 
-7.0 

0.0355339 
0.0 
2.0 

1.48907253 
-7.5159241 

12.03124944 
14.5080079 
1.94638464 
9.43068151 

Precis ion 

E 

2 x 10 -5  
7 x 10 -8 

1 0 - s  
1 0 - s  
1 0 - s  

3 × 10 -T 
7 x I0 - s  
2 x 10 - 7  

10 - s  
10 - s  

O p t i m a l P o i n t ( s )  

Xopt 
3.0 

2.414213 
2.0 
4.0 

0.966085 
1.590717 

-6.774576,-0.49139,5.791785 
-7.083506,-0.8003,5.48286 

7.585057 
9.436578 

T A B L E  III. 2-var iable  test  func t ions  for HOlder opt imizat ion 

Function 
number 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 

HSlder Interval 
function f (x ,y)  [a, b] 

sin(x) sin(zy) 

sin(2x + y)/(sin(y) + 2) 

- sin(x + y) - (x - y)2.4_ 1.5x - 2.5y - 1 

sin((x -- 1)(z -- 2)(y + 1)) 

_ { ~ - 2 ~ + I )  ~ 

- y - 4 - ~ - + 7 - 6  - l O ( 1 - s @ ) c o s z - 1 0  

- lO0(y - -  x ~ )  2 - -  ( x  - 1) 2 

(~+~) . ~ 1  - 0 . 1  1 2 + x 2 +  ~ -t- ~.,y., ] 

-~ ~: x,~+ ~ ¢o5(101n((~+ 1)~,)) - 1 
/=1 i : 1  

- [i + (z + y + I)2(19- 14z + 3z 2 -  14y+6xy+3y2)] 
× [30 + (2~ - 3y)~(18 - 32x + 12~ + 48y- 36xy + 27y~)] 
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Lipschitz Source 
constant L1 

[0, 4] × [0, 4] 4.299 new 

[-5,  5] × [-5, 51 2.237 new 

[-1.5,41× [-3,3] 17.034 [15] 

[ - -1 ,  11 × [--2,  O] 7.5 n e w  

[1, 2] x [1, 21 47.426 [21] 

[-5, I0] x [0, 15] 112.44 [3] 

[-3,3] x [-1.5,4.5 12781.7 [21] 

[1, 31 x [1, 31 56.852 [21] 

[0.01,1]x [0.01,1] 988.82 [171 

[-2,21 x [-2, 21 2 2~5 892 [61 

and clearly 

L 

L l l l  x - Y l l  = L l l l x  - Yll<l-l/ )llx - Yll <. ) lllb - l lx - Yll 

The optimal values and vectors are given respectively in Tables II and IV together 
with the best precision for which the optimal values were obtained. 

Both the univariate and multivariate HSlder algorithms have been implemented 
in C and run on a SUN Spare station (135.5 mips, 65.2 Mflops, 128 Meg). A double- 
ended priority queue or maxminheap ([ 12]) is used to store the subproblems. In the 
multivariate algorithm H O L  ,~, the hyperrectangles are partitioned in three (p = 3). 
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T A B L E  IV. Optimal values and vectors for the  2-variable  test functions 

Function 
number 

2.1 
2.2 
2.3 
2.4 
2.5 
2.6 
2.7 
2.8 
2.9 

2.10 

Optimal value 
fopt 

1.00000 
1.0000 

1.91322295 
1.000 

-0.16904267 
-0.39 

-0.00000570 
-1.74 

0.00017018 
-3 

Precision 

5 x 10 -~ 
2 × 10 -4  

10-8  

2 x 10 -a  
10-8 

2 x 10 -2  
3 x 10 -6  

9 x lO - a  
10-4 

5 x 104 

Optimal Vector 
Xl I 22 

1.57079713 
1.57078584 

-0.54719386 
-0.66087486 
1.79541003 
3.14158580 

-1.00045725 
1.74333181 
0.01152703 
0.00000000 

0.99999435 
-1.57078584 
-1.5472009I 
-0.64456637 
1.37786415 
2.25003810 
1.00068587 
2.02987349 
0.01440453 
-1.00045725 

It has been shown that for the Lipschitz version (c~ = 1) of the multivariate case 
(see [5]), an odd value seems to be a better choice forp: indeed, in this case, some 
function evaluations can be reused at each step. Computational experience have 
shown thatp = 3 is a good compromise for both Lipschitz and H61der optimization 
(see Gourdin, Hansen and Jaumard [5]). 

A normalization is used in order to counterbalance the variations in the Lip- 
schitz constant, the initial rectangle and the range of f from one test function to 
another. This normalization involves a "worst-case" theoretical algorithm called 
the passive  algorithm. The passive algorithm covers the initial hyperrectangle R 
with hypercubes having sides of length d. The function is evaluated at the center 
of each hypercube. The difference between the upper and the lower-bounds in 

1/o~ 
each hypercube is given by the height h L (~-~) = of the corresponding 
subproblem. The length d is computed in order to guarantee an e-optimal value: 

The minimal number of function evaluation needed by the passive algorithm in 
order to satisfy the above condition is then: 

i=1  i=1  2ca 
+1), 

which is approximated by 

-- i=1 2ca ,} \ 2ca ] = (bi - ai).  
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TABLE V. Computational results for univariate functions with Npas~ --- 104 

Function 1 / a  e Nb,,, 
1.1 1.00 1.01e+O0 394 

0.75 1.20e+O1 1021 
0.50 1.43e+02 2915 

1.2 1.00 3.25e-03 462 
0.75 3.86e-02 1173 
0.50 4.60e-01 2657 

1.3 1.00 1.20e-03 182 
0.75 1.43e-02 449 
0.50 1.70e-O1 1089 

1.4 1.00 1.20e-03 357 
0.75 1.43e-02 879 
0.50 1.70e-O1 2096 

1.5 1.00 1.80e-03 96 
0.75 2.14e-02 247 
0.50 2.55e-01 766 

1.6 1,00 2.55e-02 289 
0,75 3.03e-01 715 
0,50 3.61e+00 1741 

1.7 1,00 6.70e-02 147 
0.75 7.97e-01 496 
0.50 9.48e+00 2401 

1.8 1 i00 6.70e-02 129 
0.75 7.97e-01 402 
0.50 9.48e+00 1916 

1.9 1.00 3.75e-03 129 
0.75 4.46e-02 370 
0.50 5.30e-01 1593 

1.10 1.00 7.87e-03 60 
0.75 9.36e-02 171 
0.50 1.11e+00 686 

Nhod Nb,,, 
1.39 
1.42 
1.55 

Npa,~ / Nb¢,t 
25.38 

9.79 
3.43 

Npa,,/Nhoz 
18.21 

6.92 
2.21 

1.35 21.65 16.05 
1.38 8.53 6.20 
1.48 3.76 2.54 
1.49 54.95 36.90 
1.42 22.27 15.70 
1.44 9.18 6.39 
1.35 28.01 20.70 
1.32 11.38 8.65 
1.33 4.77 3.59 
1.43 104.17 72.99 
1.28 40.49 31.55 
1.42 13.05 9.20 
1.47 34.60 23.53 
1.43 13.99 9.81 
1.44 5.74 4.00 
1.31 68.03 51.81 
1.44 20.16 14.03 
1.48 4.16 2.81 
1.40 77.52 55.25 
1.35 24.88 18.38 
1.40 5.22 3.72 
1.37 77.52 56,50 
1.39 27,03 19.38 
1.39 6.28 4,50 
1.35 166.67 123,46 
1.46 58.48 40.16 
1.36 14.58 10.72 
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~¢pu 
0.04 
0.97 
0.42 
0.04 
1.03 
0.34 
0.01 
0.41 
0.13 
0.03 
0.71 
0.25 

0 
0.15 
0.08 
0.03 
0.61 
0.22 
0.01 
0.67 

0.4 
0.01 
0.51 
0.29 
0.02 
0.41 
0.25 
0.01 

0.2 
0.11 

The normalization consists in choosing for each test function, the same number 
of function evaluations required by the passive algorithm. A tolerance is then 
computed for each test function: 

e --- L - -  I-Ii=l(..__~/ - -  ai) ~'~ 
\ Npasa 

The performances of both algorithms are measured in terms of Nhot, the number 
of function evaluations (including those performed during the line search) and tcpu, 
the total processing time (in seconds). Three values of 1/c~ (1, 0.75 and 0.5) are 
used for each test problem and all computations performed with Npass = 104. 
The results are given in Table V for the univariate functions, and in Table VI 
for the functions of two variables. Detailed results with various values of o~ are 
provided in Tables VII and VIII, for the first univariate function and the first 
function of 2 variables respectively. The number of function evaluations (Nhoz) 
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TABLE VI. Computational results for the 2-variable 
with Npass = 104 

functions 

Function I / a  e Nnot Npa,,/Nnol t~v~ 
2.1 1.00 1.22e-01 1013 9.87 0.I1 

0.75 4.57e-01 2527 3.96 0.27 
0.50 1.72e+00 6101 1.64 0.66 

2.2 1.00 1.58e-01 1089 9.18 0.08 
0.75 5.95e-01 2939 3.40 0.27 
0.50 2.24e+00 6775 1.48 0.65 

2.3 1.00 6.92e-01 1123 8.90 0.1 
0.75 2.60e+00 2333 4.29 0.2 
0.50 9.79e+00 5215 1.92 0.47 

2.4 1.00 1.06e-01 1821 5.49 0.16 
0.75 3.99e-01 3123 3.20 0.26 
0.50 1.50e+O0 5541 1.80 0.48 

2.5 1.00 3.35e-01 2673 3.74 0.22 
0.75 1.26e+00 4591 2.18 0.38 
0.50 4.74e+00 7355 1.36 0.63 

2.6 1.00 1.19e+01 3519 2.84 0.31 
0.75 4.48e+01 6133 1.63 0.57 
0.50 1.69e+02 9735 1.03 0.92 

2.7 1.00 5.42e+02 7967 1.26 0.69 
0.75 2.04e+03 11249 0.89 1 
0.50 7.67e+03 14301 0.70 1.31 

2.8 1.00 8.04e-01 12643 0.79 1.17 
0.75 3.02e+00 18253 0.55 1.71 
0.50 1.14e+01 19133 0.52 1.8 

2.9 1.00 6.92e+00 15687 0.64 1.73 
0.75 2.60e+01 19683 0.51 2.23 
0.50 9.79e+01 19683 0.51 2.18 

2.10 1.00 6.30e+04 13945 0.72 1.26 
0.75 2.37e+05 16139 0.62 1.44 
0.50 8.90e+05 17771 0.56 1.64 

of both algorithms are compared with those of the passive algorithm (Npass). 
The univariate H6lder algorithm H O L  t is also compared with a best possible 
algorithm. 

A best possible algorithm is a theoretical algorithm which requires the minimum 
number of function evaluations to provide an e-optimal value. It uses a best upper- 
bounding function, which for a given ~, is an upper-bounding function of maximum 
height lower than f* + e (where f* is the a priori unknown maximum value of 
f(x) over R). In the case of univariate functions, the construction for Lipschitz 
functions (see Hansen, Jaumard and Lu [8]) can easily be generalized. Assuming 
f* is known, the best upper-bound function is a saw-tooth cover bouncing between 
f(x) and f* + e (see Figure 3). Note that the number of function evaluations 
required by two such upper-bounding functions may differ by 1 due to side effects. 
A best upper-bounding function is build and the number of function evaluations 
required is denoted by Nbest. This value is used as a reference for Nhoz. Note that 
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f(a) 

Fig. 3. 

f(b) 

Illustration of a best upper-bounding function. 

f* 

% 
k 

I 

b 

it is very difficult to generalize the construction of a best upper-bounding function 
to the case of multivariate functions. No comparison with Nbest is thus provided 
for algorithm H O L  n. 

We observe in Table V that the performances of algorithm H O L  1 are close 
to those of the best possible algorithm. Indeed, Nhoz is on the average only 1.4 
larger than Nbest, which is the same as the ratio between Piyavskii's algorithm 
and a best possible algorithm in the case of Lipschitz optimization. We observe 
however that the number of function evaluations Nb~t  and Nhot increase with 
c~. This last feature appears even more clearly in Table VII. Algorithm H O L  1 is 
also much more efficient than the passive algorithm, which requires many function 
evaluations, especially for small values of o~. The computing time required by 
H O L  1 (which appears in the last column) are smaller for a = 1 and a = 2. 
Indeed, for these values, the analytical expressions providing the peak point (see 
appendix) are used, and the computing times are thus considerably reduced. For 
c~ --- 4/3, the peak point is obtained at each step, by solving an equation with the 
Fibonacci line search method and hence requires more computing time. 

For 2-variable functions, the difference between H O L  n and the passive algo- 
rithm is not as significant as for the univariate case. Indeed, we observe in Table VI 
that for the last three test functions, algorithm H O L  n requires even more function 
evaluations than the passive algorithm. This feature was already observed when 
testing multivariate Lipschitz algorithms (see [5], [7]). It seems that the last three 
test functions are particularly badly shaped for Lipschitz and H~51der optimization 
(one has many local maxima, another is very flat except for a narrow region where 
the slope increases exponentially). This is also confirmed by the fact that these 
functions require much more computing time than the others. 

In Table VII, it appears more explicitly than in Table V that Nbest, the number of 
function evaluation required to build the best upper-bounding function, increases 
with c~. This behaviour can be explained by the fact that when the intervals becomes 
very narrow, each single "tooth" of the upper-bounding function is much higher for 
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TABLE VII. Performance of HOL l on Function 1.1 for several a 

1/~ e Nb., 
1.00 1.01e+00 394 
0.95 1.65e-l-00 475 
0.90 2.71e+00 572 
0.85 4.45e+00 692 
0.80 7.31e+00 839 
0.75 1.20e+O1 1021 
0.70 1.97e+01 1247 
0.65 3.23e+01 1531 
0.60 5.30e+01 1891 
0.55 8.69e+01 2346 
0.50 1.43e+02 2915 

~VhodNb.< Np,,../~b., N~../&ot 
1.39 
1.35 
1.35 
1.37 
1.36 11.92 
1.42 
1.37 
1.39 
1.43 
1.40 
1.49 

25.38 
21.05 
17.48 
14.45 

9.79 
8.02 
6.53 
5.29 
4.26 
3.43 

18.21 
15.55 
12.94 
10.54 
8.76 
6.92 
5.84 
4.68 
3.70 
3.05 
2.30 

tcpu 
0.04 
0.44 
0.55 
0.65 
0.81 
1.06 
1.21 
1.49 
1.84 
2.23 
2.93 

TABLE VIII. Performances of HOL '~ on Function 2.1 
for several a 

1/~ e Nhot Np~ss/Nhol tepu 
1.00 1.22e-01 1013 9.87 0.11 
0.95 1.58e-01 1247 8.02 0.13 
0.90 2.07e-01 1475 6.78 0.15 
0.85 2.69e-01 1765 5.67 0.19 
0.80 3.51e-01 2121 4.71 0.22 
0.75 4.57e-01 2527 3.96 0.26 
0.70 5.96e-01 3045 3.28 0.33 
0.65 7.77e-01 3753 2.66 0.46 
0.60 1.01e+00 4369 2.29 0.5 
0.55 1.32e+00 5313 1.88 0.64 
0.50 1.72e+00 6101 1.64 0.71 

large values of a. The table also seems to confirm that H O L  l takes only 1.4 more 
function evaluations than the best possible algorithm. As expected, the computing 
time required by H O L  1 is proportional to Nhol, when no analytical expression are 
available for the peak point, i.e., for all values of a except 1 and 2. For these two 
values, the computing times are much smaller. 

The observation that the number of function evaluations increases with a does 
not seem to extend to the case of the 2-variable functions. Indeed, it appears in Table 
VIII that Nhot remains approximately constant, and so the computing times. 
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7. Appendix 

Determination of the peak point when oz = 2, ol = 3 and c~ = 4. 
We assume that the function f satisfies a HSlder condition with constants L and a. 
Let C~ and C~ be the two curves defined by 

f y -- f (a)  + L ~ r - x - a  c: 
x ~ a ~  

and 

f y = f ( b ) + L ~ f 6  - x cg 
x<~b. 

It has been shown in Section 3.1 that there is a unique intersection point between 
the two curves. We now propose some additional results in order to obtain an 
explicit expression for the intersection point coordinates for some cases where 
o~EN. 

PROPOSITION 5. The intersection of the two curves C~ and C~ satisfies the 
following system of equations: 

o~ f (a )  + f (b)  ,~-2i f (b)  - f (a )  2~ L ~ ' ( b -  l)  

i = 0  

~ ( ( ~ )  ( 2 i + 1  Y f(a)+ f(b))°~-2i-l (f(b)- f(a)) "2 = L°(2x-a-b)2 
i = 0  

Proof. The two curves C~ and C~ can be equivalently defined as follows: 

( y -  f ( a ) )  a = L a ( x -  a) 
C~ y >~ f(a)  

( y  - f (b) )  a = L a ( b -  x) 
, Cg v> f(b) 

Hence, the intersection point satisfies: 

( y - f ( a ) )  a =  L a ( x - a ) ,  
C~ f~ C~ (y - f(b)) '~ = L~(b - x), 

y/> max{f (a), f(b)}. 

Defining the new variable 

y +  (y  f ( a ) +  f ( b ) )  
2 

(16) 

(17) 
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and denoting 

( f ( b ) -  f ( a ) )  (18) 
9 ' =  2 ' 

the intersection between the curves C~ and C~ can be restated in a system involving 
the variables x and Y: 

( r  + 7) ~ = L ° ' ( x  - a) ,  
C 2 N C~  ( Y  - "7) c~ = L a ( b  - x), (19) 

Y > hi. 
Adding the two first equations of (19), we obtain: 

( Y  + 7)  e' + ( Y  - "7) '~ = L'~(b - a).  

Expanding the left-hand-side using the Binomial formula, this equation can be 
successively rewritten as follows: 

k=O k=O 

k=O 
13:/2 

i = 0  

as (1 + ( -1 )k)  equals 2 when k = 2i (is even), and 0 otherwise. Replacing Y and 
-7 by their respective expression (t7) and (18), the first equation of Proposition 5 
is obtained. 

Similarly, substracting the two first equations of (19) yields: 

( y  + 3,)~ _ ( y  _ ,~)a = L a (2x - a - b), 

which can be successively restated in 

k=O 

OL y a _ 2 i _ 1 7 2 i +  1 = L'~(2x  - a - b), 
2 2 i +  1 "z 

as (1 - ( - 1 )  k) equals 2 when k = 2i + 1 (is odd), and 0 otherwise. The second 
equation of Proposition 5 is then also obtained. .. 

Using the previous result and notations, the intersection point between the two 
curves Cg and C~ can be obtained according to the following lemma: 
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L E M M A  1. Let Y be the unique solution of the a-th degree equation: 

2i°: y~_2i72 ~ _ L~(b2- a) , (20) 
i = 0  

such that 

? 171. 
The coordinates ( ~, ~l) of  the unique intersection point between the curves Cg and 
C~ are then given by: { o j2() 

Ce ~ra-2 i -  l.y2i+ l 
C~nCg 2 +(I/L~)~i=o 2i+I 

~1 -- f ( a )  + f (b)  
2 + ?  

The peak point coordinates are now successively provided for the cases o~ = 2, 3 
and 4. 

PROPOSITION 6. Assuming the function f satisfies a HOlder condition with a = 2, 
the intersection point (Jc, fl) between the curves C 2 and C~ is given by: 

{ ~ = a +  b f(b) (a) ~/2L2( b a) ( f(a) f (b))  2 

9 2 + .. - a) - ( f(a) - f (b))  2. 

PROPOSITION 7. Assuming the function f satisfies a HOlder condition with a = 
3, the intersection point (Jc, ~) between the curves C 3 and C~ is given by: 

a + b (a) (3A2/3 + 3B2/3 5 ( f ( a )  f (b))  2) 

_ f ( a )  + f (b )  + ~ +  
Y 2 2 

where 

A = 2L3(b - a) + ¢ ( f ( a )  - f (b))  6 + 4L6(b - -  a) 2 

B = 2L3(b - a) - V / ~ ( a )  - f (b))  6 + 4L6(b - -  a) 2. 

PROPOSITION 8. Assuming the function f satisfies a HOlder condition with a = 
4, the intersection point (:~, z~) between the curves C 4 and C 4 is given by: 

9 2 V V 2  q- 83'4 --  33'2, 

- -  + 8"74 - -  372,  
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where 

f ( b )  - f ( a )  
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